\#18 Notes Unit 3: Stoichiometry
Ch. continued
III. Percent Composition

Ex. 1) Find the \% composition of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$

$$
\begin{aligned}
2 \mathrm{~N}=2(14.007 \mathrm{~g}) & =28.014 \mathrm{~g} \mathrm{~N} \\
8+4=12 \mathrm{H}=12(1.0080 \mathrm{~g}) & =12.096 \mathrm{~g} \mathrm{H} \\
4 \mathrm{C}=4(12.011 \mathrm{~g}) & =48.044 \mathrm{~g} \mathrm{C} \\
4 \mathrm{O}=4(15.999 \mathrm{~g}) & =\frac{63.996 \mathrm{~g} \mathrm{O}}{152.15 \mathrm{~g} \text { (molar mass) }}
\end{aligned}
$$

$\% \mathrm{~N}=\underset{\text { molar mass }}{\text { mass of } \mathrm{N}} \quad \mathrm{X} 100=\underset{152.15 \mathrm{~g}}{\underline{28.014 \mathrm{~g}} \quad \mathrm{X} 100=\mathbf{1 8 . 4} \% \mathbf{N} \quad \text { Keep } 3 \text { or } 4 \text { digits! }, ~}$

$\% \mathrm{C}=\underline{\text { mass of } \mathrm{C}} \quad \mathrm{X} 100=\underline{48.044} \underline{152.15} \quad \mathrm{X} 100=\mathbf{3 1 . 6} \% \mathrm{C}$
$\% \mathrm{O}=\underline{\text { mass of } \mathrm{O}}$ molar mass $\quad \mathrm{X} 100=\underline{63.996} \underline{152.15 \mathrm{~g}} \quad \mathrm{X} 100=\underline{\mathbf{4 2 . 1 \% \mathbf { O }}}$

$$
=100.05 \% \approx 100 \%
$$

Ex. 2) Find the molar mass of a compound, if it is 23.9% oxygen. The compound contains 3 oxygen atoms in each molecule.

$$
\% \mathrm{O}=\underset{\text { molar mass }}{\text { mass O }} \mathrm{X} 100 \quad 23.9 \%=\frac{3(15.999 \mathrm{~g})}{(\mathrm{mm})} \mathrm{X} 100
$$

$$
23.9(\mathrm{~mm})=4799.7
$$

$$
\mathrm{mm}=2.01 \mathrm{X} 10^{2} \mathrm{~g} / \mathrm{mol}
$$

IV. Empirical Formula

-is the simplest whole \# ratio of atoms in a compound.

Molecular Formula (Real Formula)	Empirical Formula
$\mathrm{N}_{2} \mathrm{H}_{4}$	$\mathrm{~N}_{1} \mathrm{H}_{2}=\mathrm{NH}_{2}$
AlCl_{3}	AlCl_{3}
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{CH}_{2} \mathrm{O}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}=\mathrm{N}_{2} \mathrm{H}_{12} \mathrm{C}_{4} \mathrm{O}_{4} \rightarrow$	$\mathrm{NH}_{6} \mathrm{C}_{2} \mathrm{O}_{2}$

chemistrynoteslecture.com © 2011

Ex. 1a) Find the empirical formula of a compound containing 3.57 g Sc and 1.91 g O .

i) Find mols:	3.57 g Sc	1 mol
	44.956 g	$=7.94109 \mathrm{X10}^{-2} \mathrm{~mol} \mathrm{Sc}$ $\mathrm{Sc}_{\#} \mathrm{O}_{\#}$

$\uparrow \uparrow$
mols

$$
\begin{array}{l|l}
1.91 \mathrm{~g} \mathrm{O} & 1 \mathrm{~mol} \\
15.999 \mathrm{~g}
\end{array}=1.193824 \times 10^{-1} \mathrm{~mol} \mathrm{O}
$$

ii) Divide by the smallest: $7.94109 \times 10^{-2} \mathrm{~mol} \mathrm{Sc}=1.00$
7.94109 X10 $^{-2}$
$1.193824 \mathrm{X10}^{-1} \mathrm{~mol} \mathrm{O}=1.50335=1.50$
7.94109 X10 $^{-2}$
iii) If necessary, multiply to make whole \#'s: $\quad \stackrel{\mathrm{Sc}_{1.00} \mathrm{O}_{1.50}}{\mathrm{X} 2} \mathrm{X} 2 \rightarrow \mathbf{S c}_{2} \mathbf{O}_{\mathbf{3}}$

Ex. 1b) What is the molecular formula, if the molar mass is $413.7 \mathrm{~g} / \mathrm{mol}$?

$$
\begin{aligned}
& \mathrm{Sc}_{2} \mathrm{O}_{3}=2 \mathrm{Sc}+3 \mathrm{O}=137.909 \mathrm{~g} / \mathrm{mol} \\
& \underline{\text { molar mass }}=\underline{413.7 \mathrm{~g} / \mathrm{mol}}=3 \quad 3 \text { times bigger, so } \mathrm{Sc}_{2} \mathrm{O}_{3} \mathrm{X} 3=\mathbf{S c}_{6} \mathbf{O}_{9}
\end{aligned}
$$

Ex. 2a) Find the empirical formula of a compound containing 37.7 \% Na, 23.0 \% Si and ? \% O.
The percents must add up to 100%, so

$$
100 \%-37.7 \% \mathrm{Na}-23.0 \% \mathrm{Si}=39.3 \% \mathrm{O}
$$

Assume we have a 100 g sample of the compound: 37.7% of $100 \mathrm{~g}=37.7 \mathrm{~g} \mathrm{Na}$ 23.0% of $100 \mathrm{~g}=23.0 \mathrm{~g}$ Si and 39.3% of $100 \mathrm{~g}=39.3 \mathrm{~g} \mathrm{O}$

$$
\begin{array}{l|lr}
37.7 \mathrm{~g} \mathrm{Na} & 1 \mathrm{~mol}=1.6398434 \mathrm{~mol} \mathrm{Na} & / 8.189133 \mathrm{X10}^{-1}=2 \\
& 22.990 \mathrm{~g} \\
\hline 23.0 \mathrm{~g} \mathrm{Si} & 1 \mathrm{~mol}=8.189133 \mathrm{X10}^{-1} \mathrm{~mol} \mathrm{Si} & / 8.189133 \mathrm{X10}^{-1}=1 \\
& 28.086 \mathrm{~g} \\
\hline 39.3 \mathrm{~g} \mathrm{O} & 1 \mathrm{~mol}=2.4564035 \mathrm{~mol} \mathrm{O} & / 8.189133 \mathrm{X10}^{-1}=3 \\
& 15.999 \mathrm{~g} \\
&
\end{array}
$$

Ex. 2b) What is the molecular formula, if the molar mass is 244 g ?
$\mathrm{Na}_{2} \mathrm{SiO}_{3}=122.062 \mathrm{~g} / \mathrm{mol}$
$244 \mathrm{~g}=2$
$122.062 \mathrm{~g} / \mathrm{mol}$
$\mathrm{Na}_{2} \mathrm{SiO}_{3} \mathrm{X} 2=\mathrm{Na}_{4} \mathbf{S i}_{2} \mathbf{O}_{6}$
\#20 Notes V. Hydrates -water is incorporated inside the crystalline solid.

$\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	iron II sulfate heptahydrate
$\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	cobalt II nitrate hexahydrate

Ex. 1) Find the formula of the hydrate, if it contains $9.77 \mathrm{~g} \mathrm{CuCl}_{2}$ and $2.62 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.

$2.62 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	1 mol
	18.015 g

$\mathbf{C u C l}_{2} \cdot 2 \mathbf{H}_{2} \mathbf{O}$

Ex. 2) Find the formula of the hydrate, if it contains $54.6 \% \mathrm{FeSO}_{4}$ and $45.4 \% \mathrm{H}_{2} \mathrm{O}$.

$54.6 \mathrm{~g} \mathrm{FeSO}_{4}$	1 mol
151.908 g	

$45.4 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$	1 mol
	18.015 g

$\mathrm{FeSO}_{4} \cdot \mathbf{7} \mathrm{H}_{2} \mathbf{O}$
$\mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{SO}_{2(\mathrm{~g})}$

Reactants
(react in the reaction)

Products
(are produced/formed in the reaction)

Steps:

1) Put reactants on the left side of the arrow and the products on the right.
2) Balance the elements by changing the coefficients at the front of the compounds, until both sides are equivalent. (Do not change subscripts or put numbers into the compound!!) $\mathrm{H}_{2} \mathrm{O} \neq \mathrm{H}_{3} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O} \neq \mathrm{H}_{2} 2 \mathrm{O}$
a) Balance metals first $\{(+)$ part of the compounds $\}$.
b) Balance N or S .
c) Balance H or O .
d) Save for last whatever element is all over.

$$
\begin{aligned}
& \text { Ex. 1) } \mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \\
& 2 \mathrm{~N} \quad \underline{2}(1 \mathrm{~N})=2 \mathrm{~N} \quad \text { Fix } \mathrm{N}, \mathrm{O} \text { is everywhere. } \\
& 5 \mathrm{O} \quad 2+2=4 \mathrm{O} \\
& \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow \underline{\mathbf{2}} \mathrm{NO}_{2}+\mathrm{O}_{2} \\
& 2 \mathrm{~N} \quad 2 \mathrm{~N} \\
& 5 \mathrm{O} \quad 4+2=6 \mathrm{O} \text { We need more O on the left, } \\
& \text { so try doubling the } \mathrm{N}_{2} \mathrm{O}_{5} \text {. } \\
& \underline{\underline{2}} \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{O}_{2} \\
& 4 \mathrm{~N} \quad \underline{2}(2 \mathrm{~N})=4 \mathrm{~N} \quad \text { Refix } \mathrm{N} \text {. } \\
& 10 \mathrm{O} \quad 4+2=6 \mathrm{O} \\
& 2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow \underline{4} \mathrm{NO}_{2}+\mathrm{O}_{2} \\
& 4 \mathrm{~N} \quad 4 \mathrm{~N} \\
& 10 \mathrm{O} \quad 8+2=10 \mathrm{O} \quad \text { balanced }
\end{aligned}
$$

$$
\begin{array}{cl}
\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NaOH} \rightarrow \mathrm{Cr}(\mathrm{OH})_{3}+\underline{\mathbf{3}} \mathrm{NaNO}_{3} \\
1 \mathrm{Cr} & 1 \mathrm{Cr} \\
3 \mathrm{~N} & 3 \mathrm{~N} \\
9+1=10 \mathrm{O} & 3+9=12 \mathrm{O} \\
\underline{\mathbf{3}}(1 \mathrm{Na})=3 & 3 \mathrm{Na} \\
1 \mathrm{H} & 3 \mathrm{H} \\
& \\
\mathbf{C r}\left(\mathbf{N O}_{3}\right)_{3}+\underline{\mathbf{3}} \mathbf{~ N a O H} \rightarrow \mathbf{C r}(\mathbf{O H})_{3}+\mathbf{3} \mathbf{N a N O}_{3} \\
& \\
1 \mathrm{Cr} & \text { Fix } \mathrm{Na} \text { or } \mathrm{H} \\
3 \mathrm{~N} \\
9+3=12 \mathrm{O} & 3 \mathrm{~N} \\
3 \mathrm{Na} & 3+9=12 \mathrm{O} \\
3 \mathrm{H} & 3 \mathrm{Na} \\
& 3 \mathrm{H}
\end{array}
$$

Ex. 3)

1) Decomposition (one compound falls apart to 2 or more compounds)
$\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}$
2) Synthesis (2 or more compounds combine to form one compound)
$2 \mathrm{Al}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}$
3) Combustion (burning)

Compound $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{\mathbf{2}}+\mathrm{H}_{\mathbf{2}} \mathrm{O}$
Combustion of $\mathrm{C}_{3} \mathrm{H}_{6}$:
$2 \mathrm{C}_{3} \mathrm{H}_{6}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
4) Single Displacement (elements and compounds, one element replaces another)
$\underset{\uparrow}{\mathrm{Cl}_{2}+2 \mathrm{KI} \rightarrow 2 \mathrm{KCl}+\mathrm{I}_{2}} \quad \mathrm{~K}$ moves over to the Cl , leaving I alone
5) Double Displacement (all compounds, 2 elements/groups replace each other)

Steps:

1) Write the balanced chemical reaction.
2) Write a conversion equation.
a) Find the mols of the compound with known mass.
b) Use the mol ratio (in the balanced reaction) between the 2 compounds you are interested in.
c) Find the grams of the compound you are looking for.
The only time you look at the balanced reaction is for step 2b.!!

Ex. 1) How many grams of HCl will react with $44.7 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$?

$$
2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

| $44.7 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ | $1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ | 2 mol HCl | 36.461 g HCl |
| :--- | :--- | :---: | :---: |$=\mathbf{4 4 . 0} \mathbf{g ~ H C l}$

Ex. 2) What would be the minimum amount of carbon monoxide used, if 80.3 g iron were produced?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

| 80.3 g Fe | 1 mol Fe | 3 mol CO | 28.01015 g CO |
| :--- | :---: | :---: | :---: |$=\mathbf{6 0 . 4} \mathbf{g ~ C O}$

\#24 Notes IX. Limiting Reagent
-is the reactant that makes the least amount of product.
How many cars?

Ex. 1a) Given 76.5 g iron III oxide and 45.0 g carbon monoxide, find the mass of iron produced.

| $76.5 \mathrm{~g} \mathrm{Fe}_{2} \underline{\mathrm{O}}_{3}$ | $1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ | 2 mol Fe | 55.847 g Fe |
| :--- | :--- | :--- | :--- |$=53.5 \mathrm{~g} \mathrm{Fe}$

45.0 g CO	1 mol CO	2 mol Fe
	55.847 g Fe	

$53.5 \mathbf{g ~ F e}$ (the answer will be the least.)

X. Percent Yield

-shows the efficiency of a reaction.
The limiting reagent problems allow a calculation to give the amount of product that should be produced (the theoretical yield).

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \quad \text { X } 100
$$

Ex. 1b) What is the \% yield, if only 47.4 g Fe was produced in an experiment.

$$
\begin{aligned}
& \% \text { yield }=\frac{47.4 \mathrm{~g}}{53.5 \mathrm{~g}} \begin{array}{c}
\uparrow \\
\text { Theoretical yield is found from doing the stoichiometry (above in part a) }
\end{array} \quad \text { X } 100=88.6 \% \\
& \\
&
\end{aligned}
$$

** Don't forget: $\mathrm{D}=\mathrm{m} / \mathrm{v}$ (if have density and volume, find mass)
** 100% yield means all will react (actual = theoretical), so ignore the $\%$ part, just do stoichiometry
End of Notes (Assignments \#25-26 are Review Assignments. There are no notes for these assignments.)

